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Abstract

Worldwide decomposition rates depend both on climate and the legacy of plant functional

traits as litter quality. To quantify the degree to which functional differentiation among

species affects their litter decomposition rates, we brought together leaf trait and litter mass

loss data for 818 species from 66 decomposition experiments on six continents. We show

that: (i) the magnitude of species-driven differences is much larger than previously thought

and greater than climate-driven variation; (ii) the decomposability of a species� litter is

consistently correlated with that species� ecological strategy within different ecosystems

globally, representing a new connection between whole plant carbon strategy and

biogeochemical cycling. This connection between plant strategies and decomposability is

crucial for both understanding vegetation–soil feedbacks, and for improving forecasts of

the global carbon cycle.
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Litter decomposition in terrestrial ecosystems has a pro-

found effect on global carbon cycles (Prentice et al. 2001;

Canadell et al. 2007) through litter carbon respiration as well

as litter accumulated as potential fuel for wildfires (Sitch

et al. 2003; Friedlingstein et al. 2006). Forecasts of strong

climate warming and other global environmental changes

for the remainder of this century (IPCC 2007) have put

feedbacks to climate through changes in litter turnover and

thereby carbon stocks high on the international research

agenda. The multiple drivers of decomposition include the

effects of environment, at both regional and micro-site

scales, the substrate quality of litter, and composition of the

decomposer community (Cornelissen 1996; Aerts 1997;

Parton et al. 2007). Climate sets broadly similar conditions

for long-term litter decomposition within biomes (Berg et al.

1993; Moore et al. 1999; Raich et al. 2006; Parton et al. 2007).

In contrast, interspecific differences in green leaf traits and

the subsequent quality of litter produced following leaf

senescence are associated with the diversity of plant

resource-acquisition strategies in a given biome (Aerts

1996; Reich et al. 1997; Aerts & Chapin 2000; Grime

2001; Diaz et al. 2004; Wright et al. 2004).

Green leaf traits are modulated only modestly by climate

(Wright et al. 2005), and over 40% of global variation for

particular leaf traits can be found within individual sites

(Wright et al. 2004). The pronounced within-site variation

among species can be due to finer-scale environmental

heterogeneity in space (e.g. soil fertility and hydrology) and

time (e.g. disturbance) and ⁄ or tradeoffs among other

physiological traits that produce roughly similar fitness

levels among coexisting species with alternate physiological

strategies (Grime 2006; Marks & Lechowicz 2006; Ackerly

& Cornwell 2007).

Many of the physiological and protective features of

green leaves persist through senescence, in part because the

resorption of nutrients by the plant is incomplete, leading to

a strong correlation between green leaf tissue chemistry and

the chemical composition of discarded leaf litter (Aerts

1996; Killingbeck 1996). The carbon and nutrient chemistry

and stoichiometry of the litter, and its physical features, can

then have a strong effect on the abundance and activity of

decomposers leading to different rates of decomposition

(Melillo et al. 1982; Taylor et al. 1989). We therefore

hypothesized (i) that variation in leaf litter decomposition

rates within climate regions worldwide would be a function of

the traits of living plant species; and (ii) that this species-

driven variation would equal direct climate-driven variation

in leaf litter decomposition across biomes.

We tested these hypotheses by synthesising data from

published and unpublished experiments (Assembly of

Research on Traits and DECOmposition: ART-DECO

project). Our focus was on data sets from experiments that

incubated leaf litter of many species in a common

environment, holding climate, soil environment, decom-

poser community, and incubation period constant within

each study. In total, the database contains 1196 records of

species-by-site combinations from 66 sites on six continents

including 818 species from 165 plant families. The sampled

diversity largely parallels the mix of diversity among higher

plant taxa: the data set includes 580 eudicot species, 118

monocots, 22 species from the Magnoliid lineage, 39

Gymnosperms, 37 Pteridophytes (ferns and fern allies),

and 20 Bryophytes. The broad coverage of our data set and

meta-analytic methods allowed us to isolate species-specific

decomposability within each study, and to search for

decomposition relationships with continuous traits, plant

functional types, and phylogenetic groups that are consistent

across studies.

M E T H O D S

Species-specific decomposition records and the traits of

green leaves and undecomposed leaf litter were collected

from published and unpublished sources based on exper-

imental multi-species incubations (see Appendix S1). In

most cases, the data were contributed directly by the lead

author of the original experiment, allowing the original

researcher to classify species functional traits and to include

unpublished values for particular traits. In experimental

studies (e.g. when decomposition included fertilization of

the decomposition environment) only the control groups

were used. Species decomposition records were collected as

percent mass loss for each successive harvest, and decom-

position constants (k) were calculated for each species-

experiment combination (Chapin et al. 2002). The number

of harvests (1–10), the length of the decomposition period

before each harvest (< 30 days to > 1700 days), the fertility

of the decomposition site, and the experimental methods

(e.g. position of litterbags during decomposition) varied

from study to study as appropriate for the questions asked

in the particular study. In this meta-analysis, we sought to

analyze repeated within-study patterns.

Species-based variation in decomposition rates were

quantified both as the total range observed within each

study and also the range of the middle 90% of species within

each study (calculation following type 7 from Hyndman &

Fan 1996). Climate-driven variation was calculated using the

same statistical methods from published studies (fig. 1a in

Parton et al. 2007 and Berg et al. 1993). Standard meta-

analysis techniques (METAWIN v2.0; Rosenberg et al. 2000)

were used to quantify the degree of congruence among

results from studies undertaken under a variety of climatic

and experimental conditions. Response ratios were used to

compare effect sizes from the set of studies, with study

included in the model as a random factor. Uncertainty

surrounding estimates of effect size were described using
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(nonparametric) bootstrap confidence intervals. For pair-

wise comparisons of group-mean effect size (e.g. deciduous

vs. evergreen woody species), only studies with > 2 species

were included in each group. We derived mean slope

estimates and statistical significance of trait-decomposition

relationships using mixed-effects ANCOVA, with study treated

as a random factor and traits used sequentially as covariates

(R v2.6: function �lme�), and we calculated weighted

estimates of regression coefficients for the trait-decompo-

sition relationships (Sokal & Rohlf 1995).

R E S U L T S

How wide is the variation in leaf decomposition rates due to

species traits, compared with climate-driven variation? To

calculate the magnitude of the species-based effect within an

ecosystem while holding climate constant, we considered

only studies that sampled > 20 species from one climatic

zone, leaving 14 studies. On average, these studies found a

18.4-fold range in decomposition rate. Considering only the

middle 90% of the species in each study (that is, between the

5th and 95th quantile), there was a 10.5-fold average

difference in species decomposition rates (size of circles in

Fig. 1). We compared these results with those of two large-

scale experiments decomposing the same litter in very

different climate conditions. In North America, Parton et al.

(2007) found a 5.5-fold range in decomposition rate of a

common substrate, with the fastest decomposition in a wet

tropical forest and the slowest in the tundra. In another

large study spanning sites in Europe and North America

Berg et al. (1993) found a 5.9-fold range in the rate of

decomposition for pine litter across sites.

For each study, we quantified the relationship between

decomposition rate and leaf traits (both of green leaves and of

litter). Both green leaf and litter traits were correlated with

decomposition with roughly equal variance in decomposition

explained by each green leaf or litter trait (Fig. 2). There was

also significant collinearity among predictors: litter %N was

positively correlated with litter %P (r = 0.50, P < 0.001), and

negatively correlated with LMA (r = )0.45, P < 0.001), but
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Figure 1 The magnitude of the species effect on decomposition within regional floras located in widely varying climate conditions across the

world. Each cross in the figure and dot on the map represents a multi-species decomposition study at the modelled long-term climate (New

et al. 1999). For 14 large sample size (> 20 species) studies, we calculated the change in decomposition rate for the middle 90% of species
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litter found 5.5- and 5.9-fold ranges in decomposition rates among different biomes. On average, species-based effects were substantially

larger than climate-driven effects, showing an 18.4-fold mean difference when all data were considered, and 10.5-fold mean difference when

only the central 90% of species were included in the analyses.
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uncorrelated with litter lignin (r = 0.01, NS). Thus, positive

effects of P and ⁄ or negative effects of thicker leaves on

decomposition may contribute to the positive relationship

between decomposition and leaf and litter %N.

We found consistent large differences in decomposability

among vascular functional groups (Fig. 3) and among the

large clades within the higher plant phylogeny (Fig. 3a). The

main differences are discussed below.

D I S C U S S I O N

On average, studies that sampled many species across the

world found an 18.4-fold range in decomposition rate. This

is a much larger range than previous estimates (Chapin et al.

2002). Further, large variation in litter decomposition rates

was observed among species in all climate zones from the

Arctic to the Tropics (see distribution of circles, Fig. 1),

demonstrating that a wide range of decomposition rates

among species is a common feature of natural ecosystems

worldwide.

What underlies the large differences in species decom-

position rates? Plant species range from those that obtain

a strategically slow return on carbon invested, often

coupled with efficient nutrient use and ⁄ or extended

durability, as indicated by high leaf mass per area

(LMA) or low mass-based leaf nitrogen concentration

Figure 2 Meta-analysis of the relationships

between green leaf or leaf litter traits and

decomposition rate (k) within studies across

the world. All comparisons are within

studies with climate and experimental meth-

ods held constant. The number of studies

that measured each trait varies and is

reported in panel (a). Panel (a) shows the

log–log scaling slope for each trait. Panel (b)

shows the sample size weighted mean

correlation coefficient. Water and acid sol-

uble polysaccharide fraction consists largely

but not exclusively of cellulose and hemi-

cellulose. Associated ANCOVA found each of

the six traits significant at P < 0.01.
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(Nmass), to those capable of gaining a fast return on leaf

carbon associated with the opposite traits. This continu-

ous array of species� strategies has been termed the �leaf

economics spectrum� (Reich et al. 1997; Wright et al.

2004), because it represents fundamental biochemical and

structural tradeoffs globally (Reich et al. 1997). Here, we

show, for the first time at a global scale, that these leaf

�economic� traits lead influential afterlives, affecting the

rate of decomposition, which is a key component of the

global carbon cycle.

Consistent with previous work on smaller scales (Melillo

et al. 1982; Taylor et al. 1989), litter N and litter lignin both

had effects on decomposition (Fig. 2). Litter N was strongly

related to green leaf N, an economic trait related to

physiological capacity, and uncorrelated with litter lignin.

This suggests that both immobile carbon chemistry – litter

lignin – and traits associated with the green leaf economics

spectrum are important in influencing decomposition.

We found consistent large differences in decomposability

among vascular functional groups (Fig. 3). Woody decidu-

ous species – generally faster-return plants with shorter

individual leaf lives than woody evergreens (Reich et al.

1997) – produced litter that decomposed 60% faster than

woody evergreen species. This was true whether the

evergreen species included both gymnosperms and angio-

sperms or only the latter. Surprisingly, herbaceous species in

general did not produce litter that decomposed faster than

woody species. This was due to slow decomposition among
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Figure 3 Effect size estimates from meta-

analysis for pairwise phylogenetic and func-

tional group comparisons, including studies

that had a minimum of two species in each

group. Effect sizes correspond to a percent

change in decomposition rate (see text). All

comparisons are within studies with climate

and experimental methods held constant. In

panel (a), the decomposition of bryophytes,

ferns and fern allies, gymnosperms and

Magnoliids are compared with the eudicots.

In panel (b), we make pairwise comparisons

between woody and herbaceous species,

evergreen woody and deciduous woody

species, herbaceous forbs and herbaceous

graminoids, and species with and without

the ability to fix atmospheric N. Error bars

represent the 95% confidence intervals

obtained through bootstrapping. Please note

the shift in the y-axis scale between panel (a)

and panel (b).
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graminoids (grasses and grass-like monocots), which bal-

anced fast decomposition among forbs (eudicot herbs).

These differences in decomposition are consistent with

differences in mean green leaf %N and structure among

angiosperm graminoids, forbs, shrubs and trees, when

comparing species with comparable tissue longevities (Reich

et al. 2007). In contrast to the large differences between

forbs and graminoids, species that have the capacity to fix

atmospheric N produced litter that decomposed only

slightly (and nonsignificantly) faster than non-N fixers.

Decomposability of litter also differs systematically

among the large clades within the higher plant phylogeny

(Fig. 3a). Eudicot litter decomposed faster than four out of

five more basal clades both across all species and within

specific growth forms. Global mean effect sizes demon-

strate that eudicot litter decomposed on average four times

faster than bryophyte litter, three times faster than litter of

ferns and their allies, 1.8 times faster than gymnosperm litter

and 1.6 times faster than monocot litter.

One of the key uncertainties in forecasts of the carbon cycle

are potential shifts in the identity and traits of the dominant

plant species, which have feedbacks to the climate cycle

through numerous mechanisms including decomposition rate

(Chapin et al. 2005; Cornelissen et al. 2007; Suding et al. 2008).

Within biomes across the world there are numerous predic-

tions for shifts in the traits of the dominant species due to

anthropogenic change. To list just three: a decrease in the

abundance of slow decomposing bryophytes in the tundra

(Hobbie 1996), a shift from evergreen gymnosperm to

deciduous angiosperm dominance at the southern edge of the

boreal forest (Cramer et al. 2001), and a shift to greater

graminoid biomass with greater N deposition (van Wijk et al.

2004; Soudzilovskaia et al. 2007). The magnitude of the

differences reported here suggests that shifts in the relative

abundance of these already co-existing groups in response to

anthropogenic change could have large effects on regional

carbon cycles (Garnier et al. 2004; Cortez et al. 2007).

In summary, the traits of green leaves of different species

vary widely within particular biomes and sites. This variation

is associated with different �economic� strategies for carbon

gain and growth and with different phylogenetic groups

(Reich et al. 1997; Wright et al. 2004). This functional

differentiation has large and consistent afterlife effects on

the rate of decomposition of senesced leaves. Based on this

worldwide data set, we calculate that species-based variation

in leaf composition has a very strong effect on decompo-

sition rate, larger than both previous estimates and the effect

of global climatic variation. These results demonstrate that

the leaf afterlife features of differentiation in plant func-

tioning should be considered a predominant control on the

rate of decomposition of organic matter in ecosystems.

Correctly forecasting the abundance and distribution of

plant species traits and their associated decomposability

under future climates and atmospheric CO2 concentrations

is crucial for accurate forecasts of the future carbon cycle.
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