The origins and evolution of the genus *Myosotis* L. (Boraginaceae)

Richard C. Winkworth, a,b,* Jürze Grau, c Alastair W. Robertson, b and Peter J. Lockhart a,d

a Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
b Institute of Natural Resources, Massey University, Palmerston North, New Zealand
c Institut für Systematische Botanik, Universität München, München, Germany
d The Allan Wilson Center for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand

Received 10 August 2001; received in revised form 20 February 2002

Abstract

Although morphologically well defined, the phylogeny and taxonomy of *Myosotis* has been uncertain. In particular it has been unclear whether the genus had a Northern Hemisphere or Australasian origin. However, separate analyses of the ITS and the 3' region of *matK*, as well as a combined analysis of ITS, 3' *matK*, the *psbA–trnA* spacer, and 3' *ndhF* regions indicate that several distinct lineages exist within *Myosotis* and strongly support a Northern Hemisphere origin for the genus. Further, the observed transoceanic distributions and levels of genetic divergence between lineages indicate that long distance dispersal has been important for establishing the current geographic range expansion of *Myosotis*. Our molecular data also suggest that the diversification of Australasian *Myosotis* has occurred since the late Tertiary and is largely due to radiation within and from New Zealand. This inference is consistent with the findings of recent phylogenetic studies on other New Zealand alpine genera. Our results highlight the important role played by late Tertiary and Quaternary climate change in explaining current floristic diversity. The genetic relationships reported here also suggest that the current infrageneric taxonomy of *Myosotis* does not fully reflect the evolution of the genus. © 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Myosotis consists of about 100 species distributed predominantly in the temperate zones of both hemispheres, with a few taxa occurring in alpine regions of the tropics. Within this broad distribution the genus has two centres of diversity—one in western Eurasia, where approximately 60 taxa occur (Al-Shehbaz, 1991), and the other in New Zealand where approximately 35 species are formally described (Moore, 1961; Moore and Simpson, 1973) and several remain undescribed (Druce, 1993). Outside these two regions the genus is poorly represented with fewer than 10 species restricted to North America, South America, Africa, New Guinea, and Australia (Al-Shehbaz, 1991).

Although *Myosotis* is clearly defined by both vegetative and reproductive morphology the genus is considered taxonomically complex, with little consensus on the limits, ranks, and infrageneric classification (Al-Shehbaz, 1991). Earlier taxonomic treatments (e.g., de Candolle, 1846; Stroh, 1941) relied heavily on the nature of the corolla scales and anther exsertion. However, both Moore (1961) and Grau and Leins (1968) have questioned the usefulness of these characters, in particular anther exsertion. The criticism is well illustrated in New Zealand where several species pairs, indistinguishable on the basis of vegetative characteristics, have been assigned to different infrageneric groups due to differences in the degree of anther exsertion (Moore, 1961; Moore and Simpson, 1973) and several remain undescribed (Druce, 1993). Outside these two regions the genus is poorly represented with fewer than 10 species restricted to North America, South America, Africa, New Guinea, and Australia (Al-Shehbaz, 1991).

*Corresponding author. Fax: +203-432-3854.
E-mail address: richard.winkworth@yale.edu (R.C. Winkworth).
corresponds to the two centers of *Myosotis* diversity. Section *Myosotis* has a Northern Hemisphere distribution, while section *Exarrhena* occurs in the Southern Hemisphere. The only important exception to this general geographical pattern is a small group of taxa related to the Eurasian annual *M. discolor* that were included in section *Exarrhena* because their pollen morphology suggested a close relationship with the Southern Hemisphere taxa (Table 1; Grau and Schwab, 1982).

The evolutionary relationships of the infrageneric groupings proposed by Grau and Schwab (1982) have remained unclear. Grau and Leins (1968) suggested that the greater diversity of pollen morphology between austral taxa indicated a Southern Hemisphere origin for the genus. Consistent with this interpretation, both Fleming (1962) and Wardle (1963, 1968) suggested that the ancestors of many New Zealand alpine lineages, including those of *Myosotis*, were already present in the Southern Hemisphere during the Tertiary period. An alternative hypothesis proposed by Raven (1973) was that the ancestors of the Australasian *Myosotis* arrived from the Northern Hemisphere only during the late Pliocene or Pleistocene.

We determined DNA sequences of the nuclear ITS and three chloroplast DNA markers (the 3’ region of the *matK* gene, the 3’ region of the *ndhF* gene, and the *trnK-psbA* intergenic spacer) for *Myosotis* species and representatives from possible outgroup genera within the Boraginaceae. Analyses of these data test hypotheses on the evolution and taxonomy of *Myosotis.*

2. Materials and methods

2.1. Plant material

Tissue samples for this investigation were either silica gel preserved field collections or were obtained from existing herbarium specimens. Appendix A provides details of the accessions used for this investigation.

<table>
<thead>
<tr>
<th>Subgeneric group</th>
<th>Morphological characteristics</th>
<th>Distribution and content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section Myosotis</td>
<td>Pollen grains small, constricted at equator and with fine perforations at poles; stigmas two lobed with papillae only slightly differentiated; corolla scales with long papillae</td>
<td>All Eurasian, African, and North American species except those belonging to the discolor group</td>
</tr>
<tr>
<td>Section Exarrhena austral group</td>
<td>Large pollen grains, surface conspicuously sculptured; simple stigmas with large club shaped papillae; corolla scales with short papillae</td>
<td>All Australasian and South American taxa</td>
</tr>
<tr>
<td>Section Exarrhena discolor group</td>
<td>Large pollen grains, but lacking surface sculpturing or perforations found in other groups; form of corolla scales and stigmas as in the austral group</td>
<td>A small group of taxa distributed in Eurasia, but with one species endemic to east Africa</td>
</tr>
</tbody>
</table>

2.2. DNA extraction, marker amplification, and DNA sequencing

Genomic DNA was extracted from dried tissue samples using a cetyltrimethylammonium bromide (CTAB) protocol, modified from Doyle and Doyle (1990). The marker loci were amplified in reaction volumes of 20 µL containing 1× Q solution (Qiagen), 1× PCR buffer (Qiagen), 250 µmol each dNTP (Boehringer Mannheim), 10 pmol each amplification primer, 1 U *Taq* DNA polymerase (5 U/µL; Qiagen), and 10–100 ng of total cellular DNA. Sequences and combinations of oligonucleotide primers used in PCR amplifications are detailed in Table 2. For each taxon multiple DNA sequences were aligned by eye and any ambiguity checked against the corresponding electrophoretograms.

2.3. Phylogenetic analyses

2.3.1. Data alignment and tree building

Preliminary multiple alignments of DNA sequences were obtained using the progressive alignment procedure implemented in ClustalX (Thompson et al., 1994). These alignments were then inspected visually and checked for misalignment. A conservative approach was taken towards the analysis of the aligned sequences—gapped sequence positions, variable positions immediately flanking gaps, and all ambiguous sequence positions were excluded from tree building analyses. Phylogenetic trees were
constructed for *Myosotis* with parsimony and quartet puzzling, the latter using a maximum likelihood (ML) optimality criterion, as implemented in PAUP*4.0b8 (Swofford, 2001). Parsimony analyses were performed using the heuristic search option and the “tree-bisection-reconnection” (TBR) swapping algorithm with accelerated transformation (ACCTRAN) optimization used to infer branch (edge) lengths. For quartet puzzling with ML, a HKY 85 variable sites model (Swofford et al., 1996) was used in all analyses. Empirical base frequencies were assumed and other model parameters (e.g., the transition/tranversion ratio and proportions of invariant sites) were estimated on Neighbor Joining (NJ) trees.

2.3.2. Rooting the phylogeny

Evolutionary relationships within the Boraginaceae are not well understood (Al-Shehbaz, 1991). The uncertain taxonomy and current lack of a thoroughly sampled molecular phylogeny for the Boraginaceae made it unfeasible to a priori identify appropriate outgroups for molecular phylogeny for the Boraginaceae made it untenable for a priori to infer branch (edge) lengths. For quartet puzzling with ML, a HKY 85 variable sites model (Swofford et al., 1996) was used in all analyses. Empirical base frequencies were assumed and other model parameters (e.g., the transition/tranversion ratio and proportions of invariant sites) were estimated on Neighbor Joining (NJ) trees.

Table 2

<table>
<thead>
<tr>
<th>DNA locus</th>
<th>Primer name</th>
<th>Oligonucleotide sequence</th>
<th>Used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>matK</td>
<td>trnK3R</td>
<td>5' GATTCGAGCCGGAATGTCGG 3'</td>
<td>Amplification, sequencing</td>
</tr>
<tr>
<td></td>
<td>trnK3A</td>
<td>5' CAGTACACTTGGTTGTTMC 3'</td>
<td>Sequencing</td>
</tr>
<tr>
<td></td>
<td>tK3MY1F</td>
<td>5' CAAATATGGCAATGTTGCAT 3'</td>
<td>Sequencing</td>
</tr>
<tr>
<td></td>
<td>tK3MY1FB</td>
<td>5' CGAATCTTCTCTAATTAG 3'</td>
<td>Sequencing (alternative to tK3MY1F)</td>
</tr>
<tr>
<td></td>
<td>tK3MY2F</td>
<td>5' CAATCAAATCTTCTGGGATC 3'</td>
<td>Amplification, sequencing</td>
</tr>
<tr>
<td>ndhF</td>
<td>ND1318F</td>
<td>5' GCCATTACGCATTTATATGTCG 3'</td>
<td>Amplification, sequencing</td>
</tr>
<tr>
<td></td>
<td>ND1656F</td>
<td>5' ACTTTGTGTTGATGTTTAA 3'</td>
<td>Sequencing</td>
</tr>
<tr>
<td></td>
<td>ND1762R</td>
<td>5' CCGAAAAATAGCTACTGACT 3'</td>
<td>Sequencing</td>
</tr>
<tr>
<td></td>
<td>ND2110R</td>
<td>5' CCGYBATATTGTGACCTTCC 3'</td>
<td>Sequencing</td>
</tr>
<tr>
<td>psbA–trnK</td>
<td>trnK3F</td>
<td>5' CGCCTAGTTCCGGCGTTGAAATC 3'</td>
<td>Amplification, sequencing</td>
</tr>
<tr>
<td></td>
<td>PSBAR</td>
<td>5' CGGCTCTCTCTAAATTGCAATG 3'</td>
<td>Amplification, sequencing</td>
</tr>
<tr>
<td>ITS</td>
<td>ITS5</td>
<td>5' GGAATGAAAGTGCATGAAAGG 3'</td>
<td>Amplification, sequencing</td>
</tr>
<tr>
<td></td>
<td>ITS3</td>
<td>5' GCATCGATAGGAAGCACTAGC 3'</td>
<td>Sequencing</td>
</tr>
<tr>
<td></td>
<td>ITS2</td>
<td>5' GCTAGCTTCTTCATGACTGC 3'</td>
<td>Sequencing</td>
</tr>
<tr>
<td></td>
<td>ITS4</td>
<td>5' TCCCTCGCTATTGATATGC 3'</td>
<td>Amplification, sequencing</td>
</tr>
</tbody>
</table>

*With the exception of the ITS primers (from White et al., 1990) and the *ndhF* amplification primers (ND1318F and ND2110R from Olmstead and Sweere, 1994) the oligonucleotide primers were designed during this study.*

The placements of two potential outgroup taxa (*Echium vulgare* and *Plagiobothrys albiflorus*; see Appendix A) were also evaluated on a combined data set that included sequences from the ITS, *matK*, *ndhF*, and *psbA–trnK* regions for a representative sample of *Myosotis*. A preliminary phylogenetic analysis of these data appeared in Winkworth et al. (1999) and we expand on those here. Combining sequence data from different gene loci have been shown to improve phylogenetic resolution in some situations (Cunningham, 1997). However, the approach can be inappropriate when a common mechanism of sequence evolution between loci cannot be assumed and when rates of change are significantly different between data sets (Huelsenbeck et al., 1996; Lockhart and Cameron, 2001). Prior to testing outgroup placements with the combined data we tested for partition incongruence using the partition homogeneity test (Michevich and Farris, 1981) as implemented in PAUP*4.0b8.

2.3.3. Age of the austral lineage

The length of time that the austral lineage has been in the Southern Hemisphere was investigated using the simplified phylogenetic scheme shown in Fig. 1. An upper bound for this age was assumed to correspond to the distance between ancestral node III and extant taxa within the Southern Hemisphere group.

For our test, we built branch and bound ML trees (details of the model were the same as for quartet puzzling analyses). These contained the nine Eurasian taxa, inferred from the analyses shown in Figs. 2 and 3 to be most closely related to the Southern Hemisphere austral group. They also contained either *M. albo-sericea* or
In our analyses, we excluded sequences which did not meet requirements of rate constancy as inferred using a relative rates test (Steel et al., 1996) implemented in SplitsTree 3.1 (Huson, 1998).

3. Results

3.1. Aligned DNA sequences

The high degree of similarity between the DNA sequences characterized for each molecular marker resulted in data matrices that contained little alignment ambiguity. Statistics from the aligned data matrices for *Myosotis* sequences are presented in Table 3.

3.2. Phylogenetic gene trees

Nuclear ITS and chloroplast *matK* regions were analyzed under two evolutionary tree building methods. Under maximum parsimony a single most parsimonious tree of 75 steps was recovered in analyses of the *matK* data set; this tree had a consistency index (CI) of 0.933 and retention index (RI) of 0.956. ITS sequences produced three equally parsimonious trees of 194 steps with CI of 0.691 and RI of 0.855. These trees differed only in the relationships inferred between *Myosotis alpestris*, *M. lithospermifolia*, and *M. semiamplexicaulis*. Fig. 2 presents 50% majority rule consensus trees for both the ITS and *matK* data sets. These data were also analyzed using quartet puzzling with a ML optimality criterion; trees from these analyses are shown in Fig. 3. Note that although indels were removed from analyses, only one was incompatible with the phylogenetic reconstructions based on nucleotide substitutions. That is, only a single 1 bp indel in the ITS region shared by the *M. sylvatica* lineage and the North American species, *M. macroperma*, and *M. verna* (sequence position 432) was not compatible with the evolutionary trees reported.

The topology of trees recovered with chloroplast and nuclear markers were highly congruent with each other. Congruence between trees built from these data sets is highlighted by the observation that sequences from only two taxa differ in their placement. In the ITS gene tree, the sequence from *M. persoonii* is closest to species from Southern Hemisphere, whereas in *matK* trees *M. persoonii* groups closely with several Eurasian taxa (compare Figs. 2 and 3A with 2 and 3B). The *matK* sequence for the African species *M. abyssinica* groups it with members of the “discolor” species group, however the ITS sequence places this species with representatives of section *Myosotis*.

The gene trees presented here suggest five distinct phylogenetic groups terminal to branches A–E in Figs. 2 and 3. Group A contains several Eurasian representatives and all Southern Hemisphere species. The
remaining four groups have species restricted to the Northern Hemisphere, with the exception of two southern African species that have been derived from two of these. Although our analyses indicate that genetic groups within *Myosotis* are distinct from each other, relationships between them are not resolved as bifurcating. Rather lineages are mostly separated from each other by polytomies or by weak bifurcations with low support values (e.g., Figs. 2 and 3).

3.3. Relative genetic diversity and outgroup rooting

The branch lengths in gene trees derived from *matK* and ITS sequences (Figs. 2 and 3) indicate that the greatest genetic diversity in *Myosotis* occurs amongst the Northern Hemisphere lineages—an observation consistent with a Northern Hemisphere origin for the genus. This hypothesis was tested by investigating the preferred placement of six potential outgroup sequences onto the optimal *matK* and ITS phylogenies for *Myosotis*. The sequences from these six taxa were found to be genetically divergent from their orthologs in *Myosotis* species, consistent with these species being outgroups to the genus *Myosotis*. In the tests made, hypotheses proposing a Northern Hemisphere origin for the genus (trees in which the branch to the outgroup joined an edge within a Eurasian lineage) were always favored over those suggesting that *Myosotis* arose in the Southern Hemisphere (trees in which the branch to the outgroup either joined within the austral radiation or the branch subtending this group). Arrows on Fig. 2 indicate the optimal rooting position for each of the outgroups. While a Northern Hemisphere origin is always favored, gene trees supporting a Southern Hemisphere origin were only significantly worse in 44% of the Kishino–Hasegawa tests at the P < 0.05 level, and were less significant under the more conservative Shimodaira–Hasegawa sites test.

To investigate whether significance could be obtained by using longer sequences, a combined data set comprising sequences from ITS, *matK*, *ndhF*, and *trnK–psbA* loci were jointly analyzed. These additional sequences were determined for the outgroup taxa *Echium vulgare* and *Plagiobothrys albiflorus* as well as a representative sample of *Myosotis* species. Again the optimal placement of the outgroup sequences were on edges within Northern Hemisphere lineages. More importantly, under Kishino–Hasegawa and Shimodaira–Hasegawa sites tests, all but one of the outgroup placements (i.e., 95.5% of tests) suggesting a Southern Hemisphere origin were significantly worse at the P < 0.05 level.

3.4. Dispersal in the Southern Hemisphere

Quartet puzzle and maximum parsimony trees for the ITS region (Fig. 2A, 3A, 4) all suggest New Zealand taxa are basal to the other species of the austral group (93% support under QP). Support for this inferred relationship is not significant under pairwise sites tests. However, there is less support for competing hypotheses. These include hypotheses that taxa from other Southern Hemisphere lands are more basal to the New Zealand species in outgroup rooted phylogenies (less than 1% support under QP; Fig. 4). As will be discussed, these results are consistent with New Zealand as the most likely center for the origin of the extant Southern Hemisphere species.

3.5. Age of the Australasian lineage in the Southern Hemisphere

The length of time that the austral lineage has been present in the Southern Hemisphere was investigated by examining sequence divergence and various rate calibrations for sequence diversity and absolute time. The first and most conservative calibration was derived from the earliest fossil record for *Myosotis* in New Zealand. This was $1.1 \times 10^{-3} - 3.4 \times 10^{-3}$ substitutions/site/MY, and using these estimates our ML inference suggests that the earliest possible Southern Hemisphere ancestor existed 2.0–14.7 MYA (Table 4). A second rate calibration, derived from a study of *Dendroseris* ITS sequence diversity, suggested ITS sequence evolution at $3.3 \times 10^{-3} - 5.8 \times 10^{-3}$ substitutions/site/MY (a range which included the point estimate of Sang et al., 1994). With this calibration method the austral *Myosotis* lineage is estimated to have existed in the Southern Hemisphere 1.2–4.9 MYA (Table 4).

The variance on these estimates was examined by comparing log-likelihood scores for trees constrained for topology and branch lengths. When *M. albo-sericea* was used as a representative of the austral group, trees suggesting the presence of a Southern Hemisphere lineage older than 16.4 MY (assuming the conservative pollen calibration) and 5.5 MY (assuming the conservative *Dendroseris* ITS calibration) were rejected (P < 0.05). When *M. exarrhena* was used as the Southern Hemisphere representative, the age of its lineage in the Southern Hemisphere was found to be less than 29.5 and 9.8 MY, respectively (P < 0.05). These results reject the possibility that the austral group has a relictual Gondwanan distribution.

4. Discussion

4.1. Myosotis phylogeny: the similarity between gene trees

Few incompatibilities exist between trees derived from the ITS and *matK* loci. This high degree of congruence between gene trees derived from different markers suggests that the inferred phylogenetic patterns reflect a common evolutionary history for *Myosotis*.
Differences between gene trees included the placement of *M. persoonii* and *M. abyssinica* (Figs. 3A and B). These incongruences are possibly explained by either homoplasy or “chloroplast capture,” since sequence analysis of independent PCR amplified products gave identical results. Characterization of further chloroplast and nuclear markers for populations of *M. persoonii* and *M. abyssinica* could help to distinguish between these possible explanations.

4.2. Origins and early evolution of *Myosotis*

Based on the greater diversity of pollen morphology in Australasian *Myosotis*, Grau and Leins (1968) proposed that the Eurasian lineages arose from taxa with long histories in the Southern Hemisphere. However, the greater genetic diversity between Northern Hemisphere lineages, relative to that observed among austral representatives, suggests that the genus arose in the Northern Hemisphere. Tests of outgroup placement on to *Myosotis* phylogenies support a Eurasian origin. In particular, analyses using a combined data set favored a Northern Hemisphere ancestry. Whilst our molecular results strongly suggest that *Myosotis* arose in the Northern Hemisphere it was not possible to identify the most ancestral lineage as no single optimal root position was identified.
Our molecular analyses identified five distinct lineages within *Myosotis*; molecular characterization of additional species may reveal others. Although these major groups are genetically well differentiated, the relationships between them are poorly resolved (i.e., related to each other either by polytomies or short branches with low support values) suggesting that they may have originated during a period of rapid diversification, perhaps shortly after the genus arose.

4.3. Dispersal and the worldwide distribution of *Myosotis*

An important event in the evolution of *Myosotis* was the dispersal and establishment of the genus in Australasia. Consistent with the hypothesis of Raven (1973), our phylogenetic analyses suggest that a single, mid, or late Tertiary (<20 MYA) transoceanic dispersal event by a Northern Hemisphere ancestor established *Myosotis* in New Zealand. In ITS gene trees, the *discolor* group species *M. persoonii* is the closest Eurasian relative to austral species; a finding consistent with Grau and Schwab’s (1982) suggestion that the *discolor* group is closely related to the austral species. The chloroplast data do not provide sufficient resolution to address this issue.

The extent of sequence divergence within the austral group suggests that *Myosotis* may have been in the Southern Hemisphere longer than is indicated by fossil deposits in New Zealand. In this case, species extinctions associated with Quaternary climate change cannot be discounted and consideration of this possibility may also have important implications for understanding plant dispersal routes into New Zealand. Raven (1973) suggested that dispersal of many alpine groups, including that of *Myosotis*, to New Zealand occurred via the Australian and New Guinean Alp. Our analyses do not support this hypothesis. However, if the isolated alpine zones of Australia and New Guinea were seriously restricted as climate change
during the late Tertiary/Quaternary as in New Zealand (Lee et al., 2001), such “stepping stones” may no longer contain the ancestral austral species. If so, then it may be problematic to test dispersal routes into New Zealand for plant groups using analyses of extant species alone.

Despite the concern that sequence analyses may be unable to pinpoint dispersal routes into New Zealand, our results do indicate transoceanic dispersals from New Zealand to other Southern Hemisphere lands (Fig. 4). The phylogenetic inference that some dispersal events have occurred in northerly and westerly directions is of particular interest. Previous authors have suggested the importance of west wind drift, the dominant meteorological pattern at high southern latitudes, in facilitating plant dispersal in an easterly direction (e.g., Fleming, 1979; McPhail, 1997; Mildenhall, 1981; Pole, 1994; Raven, 1973). While our results provide some evidence for the possibility of dispersal facilitated by west wind drift (i.e., from New Zealand to South America for *M. albilflora*), they also suggest that successful dispersal events have occurred to the north and west (i.e., from New Zealand to Australia for *M. australis*; and from New Zealand to New Guinea also for *M. australis*), movements that are counter to the direction of west wind drift.

Other instances of transoceanic dispersal by representatives of Eurasian lineages are also suggested by our phylogenetic graphs. Specifically analyses of both nuclear and chloroplast markers suggest that the establishment of *Myosotis* in Africa and North America has been the result of dispersal from Eurasian sources.

Few data are available on the dispersal mechanisms in *Myosotis* (e.g., Bresinsky, 1963; Ridley, 1930; Steyermark, 1963). Given that *Myosotis* nutlets appear to be poorly adapted for wind dispersal, this mechanism seems unlikely. Rather the trichomes found on the calyces and pedicels of many *Myosotis* species (Al-Shehbaz, 1991; Heywood, 1993) suggest that animal vectors may facilitate dispersal. Indeed, bird-mediated dispersal has been favored as a mechanism for transoceanic dispersal of disseminules in several plant groups in the South Pacific (Carlquist, 1996; Godley, 1967; Swenson and Bremer, 1997).

4.4. Recent species diversification

In direct contrast to the reported morphological diversity of austral *Myosotis* species (Grau and Leins, 1968; Grau and Schwab, 1982; Winkworth et al., 1999), our molecular investigations show that this group is
largely undifferentiated at several presumably neutrally evolving DNA loci. This pattern of low genetic and high morphological diversity suggests that *Myosotis* has radiated only recently in the Australasian region—an interpretation supported by molecular clock analyses on ITS sequences which suggest that the austral *Myosotis* species have radiated only since the Pliocene (Table 4). The ITS gene trees also suggest that considerable mor-

Table 3
Statistics from the aligned data matrices of *Myosotis* DNA sequences

<table>
<thead>
<tr>
<th></th>
<th>ITS</th>
<th>Chloroplast</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>matK</td>
<td>ndhF</td>
</tr>
<tr>
<td>No. of taxa sequenced</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Sequence length range (bp)</td>
<td>646–649</td>
<td>882–923</td>
</tr>
<tr>
<td>Aligned length (bp)</td>
<td>659</td>
<td>925</td>
</tr>
<tr>
<td>No. of indels</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>No. of excluded sites</td>
<td>49</td>
<td>58</td>
</tr>
<tr>
<td>No. of constant sites</td>
<td>511</td>
<td>801</td>
</tr>
<tr>
<td>No. of varied sites</td>
<td>99</td>
<td>66</td>
</tr>
<tr>
<td>No. of parsimony informative sites</td>
<td>68</td>
<td>34</td>
</tr>
<tr>
<td>% GC content range (all sites included)</td>
<td>55.6–58.9</td>
<td>32.4–33.4</td>
</tr>
<tr>
<td>% GC content mean (all sites included)</td>
<td>57.2</td>
<td>33.0</td>
</tr>
<tr>
<td>% GC content range (varied sites only)</td>
<td>42.4–58.6</td>
<td>51.5–65.7</td>
</tr>
<tr>
<td>% GC content mean (varied sites only)</td>
<td>52.5</td>
<td>63.3</td>
</tr>
</tbody>
</table>

phological diversification associated with this radiation has occurred in New Zealand (Fig. 4). The diversification of *Myosotis* in New Zealand correlates with the late Tertiary and Quaternary period—a time of considerable climatic fluctuation and geological upheaval (Raven, 1973; Wardle, 1968). Further, the branching patterns within the major Northern Hemisphere lineages may suggest that environmental changes have also been
important for establishing the extant species diversity of Eurasian Myosotis. Our molecular evidence for recent diversification in Myosotis is comparable with similar results reported for other New Zealand plant groups (e.g., see discussion in Winkworth et al., 1999) and from genetic studies on continental floras of Europe and North America. These investigations suggest that environmental change during the late Tertiary and Quaternary periods, both at global and local scales, is of great importance in understanding the development of the world’s modern floristic biodiversity (Comes and Kadereit, 1998).

4.5. Implications of molecular analyses for the intrageneric classification of Myosotis

The issue of monophyly in taxonomy is well debated and it is widely accepted that only monophyletic groups should be formally recognized in taxonomic classification (Donoghue and Cantino, 1988). While the molecular results reported here support certain aspects of the intrageneric classification proposed by Grau and Schwab (1982), in particular the close relationship between the discolor and austral groups of sect. Exarrhena, they do not provide evidence for the monophyly of the currently recognized sections. Our molecular results may indicate the need for revised intrageneric classification.

Acknowledgments

We thank Tristan Armstrong, Andrea Brandon, Fritz Ehrendorfer, Mark Large, David Havell, Jo Ward, Brian, and Chris Rance as well as staff at the listed herbaria and gardens (Appendix A) for assistance with tissue samples. This work was supported by funding from the New Zealand Marsden Foundation, Massey University and the Alexander von Humboldt Foundation.
Appendix A. Details of accessions of *Myosotis* and outgroup taxa

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Location</th>
<th>Herbarium reference</th>
<th>GenBank Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borago officinalis L.</td>
<td>Palmerston North, North Island, New Zealand (naturalized introduction)</td>
<td>MPN 24675</td>
<td>ITS: AY092898 matK: AY092892</td>
</tr>
<tr>
<td>Echium vulgare L.</td>
<td>Lake Ohau, South Island, New Zealand (naturalized introduction)</td>
<td>MPN 24676</td>
<td>ITS: AY092900 matK: AY092893 ndhF: AY092890 psbA-trnK: AY092952</td>
</tr>
<tr>
<td>Eritrichium nanum (L.) Schrader ex Gaudin</td>
<td>Switzerland</td>
<td>Hertel 25764b</td>
<td>ITS: AY092901 matK: AY092894</td>
</tr>
<tr>
<td>Myosotidium hortensia (Decne) Baill.</td>
<td>Palmerston North, North Island, New Zealand</td>
<td>No voucher (nursery origin)</td>
<td>ITS: AY092902 matK: AY092895</td>
</tr>
<tr>
<td>Myosotis abyssinica Boiss. & Reuter</td>
<td>Ethiopia</td>
<td>De Wilde 6944b</td>
<td>ITS: AY092904 matK: AY092856</td>
</tr>
<tr>
<td>Myosotis afropalustris C.H.Wr.</td>
<td>Natal, South Africa</td>
<td>K. Balkwill & M.J. Balkwill 5260b</td>
<td>ITS: AY092857</td>
</tr>
<tr>
<td>Myosotis australis R. Br.</td>
<td>Mt. Kozciuscko, Australia</td>
<td>MPN 24678</td>
<td>ITS: AY092909 matK: AY092862</td>
</tr>
<tr>
<td>Myosotis australis R. Br. (identified as M. saruwagedica)</td>
<td>New Guinea</td>
<td>CHR 198545</td>
<td>ITS: AY092933 matK: AY092884</td>
</tr>
<tr>
<td>“Yellow”</td>
<td>Mt. Ben More, South Island, New Zealand</td>
<td>Site voucher CHR 365380c</td>
<td>ITS: AY092911</td>
</tr>
<tr>
<td>Myosotis brockiei L. Moore et M. Simpson</td>
<td>Cobb Gorge, South Island, New Zealand</td>
<td>Site voucher CHR 311717c</td>
<td>ITS: AY092912</td>
</tr>
<tr>
<td>Myosotis cadmea Boiss.</td>
<td>Greece</td>
<td>Stainton 7320b</td>
<td>ITS: AY092913 matK: AY092864</td>
</tr>
</tbody>
</table>
Appendix A. (continued)

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Location</th>
<th>Herbarium reference<sup>a</sup></th>
<th>GenBank Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myosotis congesta Shuttlew.</td>
<td>Greece</td>
<td>Phitos M-33<sup>b</sup></td>
<td>ITS: AY092916</td>
</tr>
<tr>
<td>Ex Alb. & Reynier</td>
<td></td>
<td></td>
<td>matK: AY092867</td>
</tr>
<tr>
<td>Myosotis debilis Pomel</td>
<td>Spain</td>
<td>Gomez Vigide317<sup>b</sup></td>
<td>ITS: AY092917</td>
</tr>
<tr>
<td>Myosotis decumbens Host. ssp. decumbens</td>
<td>Alpi Maritime, Schönswetter & Tribsch</td>
<td>“FE-M”</td>
<td>ITS: AY092918</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092868</td>
</tr>
<tr>
<td>Myosotis discolor Pers.</td>
<td>Kahuterawa Valley, North Island, New Zealand (naturalized introduction)</td>
<td>MPN 11910</td>
<td>ITS: AY092919</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092870</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ndhF: AY092852</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psbA-trnK: AY092948</td>
</tr>
<tr>
<td>Myosotis exarrhena (R. Br.) F. Mueller</td>
<td>South-eastern NSW, Australia</td>
<td>CBG 9519354</td>
<td>ITS: AY092920</td>
</tr>
<tr>
<td>Myosotis goyenii Petrie</td>
<td>Broken River, South Island, New Zealand</td>
<td>Site voucher CHR 278306<sup>c</sup></td>
<td>ITS: AY092921</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092872</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ndhF: AY092846</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psbA-trnK: AY092942</td>
</tr>
<tr>
<td>Myosotis incrassata Guss.</td>
<td>Greece</td>
<td>Merxmüller & Wiedmann 20130<sup>b</sup></td>
<td>ITS: AY092922</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092873</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092865</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ndhF: AY092851</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psbA-trnK: AY092946</td>
</tr>
<tr>
<td>Myosotis lithospermifolia Hornem.</td>
<td>Persia</td>
<td>Rechinger 6521<sup>b</sup></td>
<td>ITS: AY092923</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092874</td>
</tr>
<tr>
<td>Myosotis macrantha (Hook, F.) Benth. Et Hook. F.</td>
<td>Hooker Valley, South Island, New Zealand</td>
<td>Site voucher CHR 252807<sup>c</sup></td>
<td>ITS: AY092924</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092875</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ndhF: AY092849</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psbA-trnK: AY092940</td>
</tr>
<tr>
<td>Myosotis macrosperma Engelm.</td>
<td>USA</td>
<td>MPN 24682</td>
<td>ITS: AY092925</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092876</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ndhF: AY092855</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psbA-trnK: AY092947</td>
</tr>
<tr>
<td>Myosotis matthewsii L. Moore</td>
<td>Cultivated (Percy’s Reserve, Wellington, New Zealand)</td>
<td>No voucher</td>
<td>ITS: AY092926</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092877</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ndhF: AY092847</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psbA-trnK: AY092941</td>
</tr>
<tr>
<td>Myosotis persoonii Rouy</td>
<td>Spain</td>
<td>Zubizarreta 5327<sup>b</sup></td>
<td>ITS: AY092927</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092878</td>
</tr>
<tr>
<td>Myosotis propinqua Fisch. & Mey.</td>
<td>Persia</td>
<td>Rechinger 39832<sup>b</sup></td>
<td>ITS: AY092928</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092879</td>
</tr>
<tr>
<td>Myosotis rakiura L. Moore</td>
<td>Curio Bay, South Island, New Zealand</td>
<td>MPN 24686</td>
<td>ITS: AY092929</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092880</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ndhF: AY092845</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>psbA-trnK: AY092945</td>
</tr>
<tr>
<td>Myosotis refracta Boiss. ssp. refracta</td>
<td>Greece</td>
<td>Gröger 1463<sup>a</sup></td>
<td>ITS: AY092930</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092881</td>
</tr>
<tr>
<td>Myosotis rehsteineri Wartm.</td>
<td>Bavaria, Germany</td>
<td>Dörr<sup>b</sup></td>
<td>ITS: AY092931</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092882</td>
</tr>
<tr>
<td>Myosotis ruscimonensis Rouy</td>
<td>France</td>
<td>Kunz & Reichstein M-310<sup>b</sup></td>
<td>ITS: AY092932</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092883</td>
</tr>
<tr>
<td>Myosotis semiamplexicaulis DC.</td>
<td>South Africa</td>
<td>Acocks 21310<sup>b</sup></td>
<td>ITS: AY092934</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>matK: AY092885</td>
</tr>
</tbody>
</table>
Appendix A. (continued)

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Location</th>
<th>Herbarium reference</th>
<th>GenBank Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myosotis stricta Link</td>
<td>Bavaria, Germany</td>
<td>Förther 7895<sup>a</sup></td>
<td>matK: AY092886</td>
</tr>
<tr>
<td>Myosotis sylvestris Ehr. ex Hoffm. ssp. Sylvatica</td>
<td>Palmerston North, North Island New Zealand (naturalized introduction)</td>
<td>MPN 24687</td>
<td>ITS: AY092935 matK: AY092887 ndhF: AY092850 psbA-trnK: AY092950</td>
</tr>
<tr>
<td>Myosotis uniflora Hook. f.</td>
<td>Hopkins River, South Island, New Zealand</td>
<td>MPN 24688</td>
<td></td>
</tr>
<tr>
<td>Myosotis verna Nutt.</td>
<td>USA</td>
<td>Taylor 3489<sup>b</sup></td>
<td>ITS: AY092936 matK: AY092888</td>
</tr>
<tr>
<td>Myosotis vestergrenii Stroh</td>
<td>Ethiopia</td>
<td>MO 3808817</td>
<td>ITS: AY092937 matK: AY092889</td>
</tr>
<tr>
<td>Symphytum × uplandicum Nyman</td>
<td>Wellington, North Island, New Zealand (naturalized introduction)</td>
<td>MPN 24690</td>
<td>ITS: AY092903 matK: AY092897</td>
</tr>
</tbody>
</table>

^aHerbarium codes. CBG—Australian National Botanic Gardens, Canberra, ACT, Australia; CHR—Landcare Research New Zealand, Christchurch, New Zealand; MO—Missouri Botanical Garden, Saint Louis, Missouri, USA; MPN—Massey University, Palmerston North, New Zealand.

^bHerbarium accession lodged at the Staatsherbarium München [MSB].

^cDue to the small size of these populations or rarity of the species in general no voucher was taken for this study. However, these populations are represented by herbarium collections made by previous workers.

References

