Variograms

Modeling & interpolating
spatial dependencies

Ginger Allington - Analyses in R - 17 March 2010
Spatial patterns

• Most ecological field studies are inherently spatial, but this factor is not incorporated into analysis (e.g. anova)

• Standard statistics can miss important trends in the data

• Spatial methods *use* the underlying spatial variations to create better estimates of differences among treatments or sites

(Scheiner & Gurevitch 2001)
Similar mean, but the patterns of spatial dependency are different

(Images from R. Barnes, Golden Software)
Variograms of the two datasets

Figure 1.5 Data Set A
Variogram and Model

Figure 1.6 Data Set B
Variogram and Model
• A method to characterize spatial variance / quantify spatial dependencies in the data

• Semivariograms present the mean variance found in comparisons of samples of increasing lag intervals (distance).

• The semi-variogram is a function that relates semi-variance (or dissimilarity) of data points to the distance that separates them.

\[\gamma(\Delta x, \Delta y) = \frac{1}{2} \mathbb{E} \left[(Z(x + \Delta x, y + \Delta y) - Z(x, y))^2 \right] \]
Interpreting variograms

- The distance between the origin and the sill is known as the **range**, and this represents the general distance over which the samples are autocorrelated.

- We can only model lag distances to the smallest distance between pairs of samples, and variance that exists at an even smaller scale is represented by the **nugget**.

- The **expected curve** for random distribution is a straight line.

- **Expected curve** when samples show auto-correlation over a certain range (Ao)
Interpreting variograms (con’t)

When data are randomly distributed we can expect that there will be little difference in the variance (γ) at any distance comparison.

However, when there is a pattern present in the distribution, we can expect that variance will increase with comparisons of close, autocorrelated samples, but will level off to form a sill when samples become independent.

The nugget:sill ratio indicates what percent of the overall variance is found at a distance smaller than the smallest lag interval, and gives a sense of how much variance you have successfully accounted for in the model.
Variogram components

- Nugget variance: a non-zero value for γ when lag distance (h) = 0. Produced by various sources of unexplained error (e.g. measurement error).
- Sill: for large values of h the variogram levels out, indicating that there no longer is any correlation between data points. The sill should be equal to the variance of the data set.
- Range: is the value of h where the sill occurs (or 95% of the value of the sill).
- In general, 30 or more pairs per point are needed to generate a reasonable sample variogram.
- The most important part of a variogram is its shape near the origin, as the closest points are given more weight in the interpolation process.

© Arthur J. Lembo, Jr. Cornell University
Variogram models

A. Spherical

\[\gamma = C_0 + C_1 \left[1.5 \frac{h}{a} - 0.5 \left(\frac{h}{a} \right)^3 \right]; \quad h \leq a \]
\[\gamma = C_0 + C_1; \quad h > a \]

B. Linear

\[\gamma = C_0 + C_1 \frac{h}{a} \]

C. Exponential

\[\gamma = C_0 + C_1 \left[1 - \exp \left(-\frac{h}{b} \right) \right] \]

D. Gaussian

\[\gamma = C_0 + C_1 \left[1 - \exp \left(\frac{-h^2}{2b^2} \right) \right] \]

© Arthur J. Lembo, Jr.
Cornell University
Spatial patterns across treatments, or sites

Figure 2. Schematic of sampling design. 9x12m plot subdivided into a 1.5 m² grid. Four 2x2 m plots subdivided into a 0.5m² grid. Soil sample locations randomly cast into each grid square.
Anisotropy

- Higher spatial autocorrelation in one direction than in others
- Variation in continuity in different directions
- Can be accounted for by calculating variograms in different directions.
Interpolation via kriging